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Abstract

Population structures can be crucial determinants of evolutionary processes.
For the Moran process on graphs certain structures suppress selective pressure,
while others amplify it (Lieberman et al. 2005 Nature 433 312-316). Evolu-
tionary amplifiers suppress random drift and enhance selection. Recently, some
results for the most powerful known evolutionary amplifier, the superstar, have
been invalidated by a counter example (Dı́az et al. 2013 Proc. R. Soc. A
469 20130193). Here we correct the original proof and derive improved upper
and lower bounds, which indicate that the fixation probability remains close to
1− 1/(r4H) for population size N →∞ and structural parameter H � 1. This
correction resolves the differences between the two aforementioned papers. We
also confirm that in the limit N,H →∞ superstars remain capable of eliminat-
ing random drift and hence of providing arbitrarily strong selective advantages
to any beneficial mutation. In addition, we investigate the robustness of ampli-
fication in superstars and find that it appears to be a fragile phenomenon with
respect to changes in the selection or mutation processes.

Keywords: evolution, Moran process, evolutionary graph theory, structured
populations

1. Introduction

Populations evolve according to the principles of natural selection and ran-
dom drift. The balance between the two competing processes is determined by
numerous factors, including both population size and structure (1; 2; 3; 4). The
most malignant tumour is unlikely to cause harm if it arises in the outermost
layer of skin and is easily brushed aside, and the most imperative model for cli-
mate change has limited influence until it has worked its way from a researchers
desk, through the literature into policy making and public awareness. Position
matters.
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One of the simplest and most influential models of stochastic evolutionary
processes in finite populations is the Moran process (5; 6). It is based on an un-
structured (or well-mixed) population of constant size N , where each individual
is classified either as a resident (wild type) or mutant. Each type is assigned
a constant fitness, which determines its propensity to reproduce. The fitness
of wild types is normalized to 1 and mutants have fitness r. An advantageous
mutant has r > 1, a disadvantageous mutant has r < 1 and a neutral mutant
is indistinguishable in terms of fitness, r = 1. In every time step, an individ-
ual is randomly selected for reproduction with a probability proportional to its
fitness and produces a clonal offspring that replaces an individual, selected uni-
formly at random, in the population. This process is repeated until eventually
the population has reached one of the homogenous states of all residents, if the
mutant went extinct, or all mutants, if the mutant successfully took over the
entire population (5; 6; 7). In both cases, the population has reached fixation.
In the absence of mutation, the two homogenous states are absorbing.

The Moran process models evolutionary dynamics based on selection and
random drift in finite populations: an advantageous mutant has a higher prob-
ability, but no guarantee, to reach fixation and, similarly, an inferior mutant is
more likely to be eliminated, but not with certainty. The fixation probability
of either type is analytically accessible for any given initial configuration. Of
particular interest is the fixation probability of a single mutant, ρM , that arises
in an otherwise homogenous population of wild types:

ρM =
1− 1

r

1− 1
rN

. (1)

In the neutral limit, r → 1, all individuals in the population are equally likely
to end up as the single common ancestor, leading to a fixation probability of
1/N .

The original Moran process ignores population structures – but this is easily
addressed by arranging individuals of a population on a graph, such that each
node refers to one individual and the links to other nodes define its neighbour-
hood. (8) and (9) conjectured that the fixation probability of a mutant in
this Moran process on graphs remains unaffected by population structures. (7)
proved that this is indeed true for a broad class of structures and, in partic-
ular, holds for simple structures such as lattices or regular networks. At the
same time, this classification indicated that fixation probabilities, ρ, may differ
for some structures by tilting the balance between selection and random drift.
Evolutionary suppressors enhance random drift and suppress selection (ρ < ρM
for r > 1 and ρ > ρM for r < 1), whereas evolutionary amplifiers exhibit the
intriguing property to enhance selection and suppress random drift (ρ > ρM for
r > 1 and ρ < ρM for r < 1).

In recent years, various aspects of the Moran process on graphs have been
explored, including effects of population structures on fixation probabilities
(1; 10; 11), or fixation times (12; 13), as well as computational techniques
(14; 15). However, the most intriguing result remains that even perfect evolu-
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tionary amplification appears to be possible: “The superstar. . . [has] the amaz-
ing property that for large [population sizes] N , the fixation probability of an
advantageous mutant converges to one, while the fixation probability of a dis-
advantageous mutant converges to zero.” (7).

More recently (16) provided a sophisticated and elaborate counter example
that contradicted the fixation probabilities reported in (7). Here we identify
the problem in the original proof, correct it and report new upper and lower
bounds on the fixation probability for superstars. Moreover, for any r > 1, a
graph can be constructed such that ρ is arbitrarily close to 1, thus confirming
the existence of perfect evolutionary amplification.

2. Model

2.1. Moran process on graphs

Population structure can be represented by assigning individuals to nodes on
a graph with links representing each individuals’ neighbourhood. The Moran
process on graphs follows the same procedure as the original Moran process
except for the crucial difference that the offspring does not replace a random
member of the entire population but rather replaces a neighbour of the repro-
ducing individual, selected uniformly at random (Fig. 1). On directed graphs,
the offspring replaces a downstream neighbour by selecting one outgoing link
uniformly at random. As before, the population has reached fixation once either
one of the absorbing, homogenous states is reached. For any number of mutants,
m (0 < m < N), the fixation probabilities of residents and mutants are both
non-zero on strongly connected graphs, i.e. graphs where every node can be
reached from any other node through a series of moves between nodes that are
connected by links (for directed graphs, only moves in the direction of the link
are permitted). If a graph is not strongly connected, then the structure may
prevent the spreading or elimination of a mutant type regardless of its fitness
and hence the fixation probability for either or both types can be zero.

For the Moran process on graphs, the fixation probabilities are the same as in
unstructured populations, c.f. Eq. (1), provided that the graph is a circulation
(7). For circulations the sum of weights of all outgoing links is equal to the sum
of weights of all incoming links for every node. This means that every node has
the same impact on the environment as the environment has on the node.

A graph is an evolutionary suppressor if the fixation probability of an ad-
vantageous mutant is less than for the original Moran process, ρ < ρM . The
simplest example is a linear chain: a graph with a single root node, which con-
nects to one end of a (directed) chain of nodes (17). Any mutation that does
not occur at the root has no chance of reaching fixation. However, if the muta-
tion occurs in the root node it eventually takes over with certainty. Assuming
that mutations arise spontaneously and are equally likely in any location, the
resulting fixation probability is simply 1/N , regardless of the mutant’s fitness
r. The linear chain is an example of a graph that is not strongly connected,
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Figure 1: Moran process on a graph. (A) graph structure and distribution of residents (blue)
and mutants (yellow). (B) selection: an individual (dashed outline) is selected to reproduce
with a probability proportional to its fitness. (C) replacement: a downstream neighbour
(dashed arrow) is randomly selected for replacement. (D) reproduction: the neighbour is
replaced by the clonal offspring of the upstream reproducing individual.

because the root node cannot be reached from any node in the chain. Evolu-
tionary suppressors are often found when high fidelity copying is of paramount
importance, such as in slowing down the somatic evolution of cancer (17; 18).

In contrast, an evolutionary amplifier is a graph, which increases the fixation
probability of advantageous mutants as compared to the original Moran process,
ρ > ρM . The simplest evolutionary amplifier is the star graph: a single root
node is connected to a reservoir of peripheral leaf nodes through bi-directional
links. The fixation probability of a single mutant for N � 1 is (7; 10)

ρ0 ≈
1− 1

r2

1− 1

r2N

. (2)

On the star, a mutant with fitness r has roughly the same fixation probability
as a mutant with fitness r2 in an unstructured population. Thus, the fixation
probability of beneficial mutations (r > 1) is enhanced, but for deleterious
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mutants (r < 1) it is reduced. Note that the fixation probability depends on
where the single mutant arises. If the mutant is located in the root node then,
for N � 1, it is almost certainly replaced in the next time step because one of
the N−1 reservoir nodes is selected for reproduction. However, if mutants arise
at random, then for N � 1 they almost surely arise in the reservoir and the
fixation probability is as specified in Eq. (2). Evolutionary amplifiers would seem
to provide promising structures for tasks where strong selection is advantageous,
such as in the adaptive immune system or in collaboration networks.

2.2. Superstars

The two most prominent features of the star graph are the large reservoir
where changes occur on a slow time scale, and the bottleneck caused by the hub
or root, where changes occur quickly. In particular, the bottleneck introduces
a second level for selection to act upon- a mutant needing to reproduce in
both the leaves and the hub before it successfully increases its population in the
leaves. This basic insight can be exploited to increase evolutionary amplification
by elongating the bottleneck and providing further levels where selection can
act. Superstars act as a more extreme version of the basic star, and have
been proposed as a way to increase evolutionary amplification further (7). The
superstar consists of a single root node surrounded by B branches (Fig. 2).
Each branch consists of a large reservoir of L nodes feeding into one end of
a linear, directed chain of length H, the stem. The last stem node in each
branch feeds into the root node, which then connects to all reservoir nodes
in every branch. The population size is thus given by N = B(L + H) + 1.
Nodes are classified based on their locations on the graph. This classification
is designed to simplify discussions but does not affect the rate of reproduction
of the individual occupying the node. (7) report the fixation probability for
superstars with L,B � H as

ρH ≈
1− 1

rk

1− 1

rkN

, (3)

where k = H + 2 is a structural parameter and indicates the number of moves
needed to reach any reservoir node from any other reservoir node. This is
the number of levels selection can act upon. Consequently it is argued that
a single mutant that arises in the reservoir of a superstar with fitness r has
approximately the same fixation probability as a mutant with fitness rk in an
unstructured population. This result would then imply that by increasing the
length of the stem, the fixation probability, ρH , of any advantageous mutant,
r > 1, could be brought arbitrarily close to 1, indicating arbitrarily strong
amplification or perfect selection.

Recently (16) provided a counter-example demonstrating that the fixation
probability in Eq. (3) is too optimistic in the particular case of H = 3 and thus
invalidated the proof in (7). In addition, (16) provide substantial simulation
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Figure 2: The superstar consists of three distinct types of nodes: the root node (pale blue),
the reservoir nodes (green) and the stem nodes(dark red). The reservoir nodes connect to the
start of the stem, the end of the stem connects to the root node and the root node connects
to all reservoir nodes in each branch. The depicted superstar has B = 5 branches each with
L = 5 reservoir nodes and a stem of length H = 4, which yields a total population size of
N = B(L + H) + 1 = 46.

based evidence indicating that Eq. (3) also fails for higher values of H. For the
counter-example they show that in the limit N →∞:

ρ3 < 1− 1 + r

2r5 + r + 1
. (4)

This upper bound reflects the probability that a mutant in a reservoir creates
a second mutant in any reservoir before getting replaced by resident offspring.
Clearly, the fixation probability according to Eq. (3) grows faster with increasing
r than Eq. (4) and for r > 1.42, results in a contradiction. It turns out that
the original proof (7) was based on an optimistic assumption concerning the
amplification along the stem. Taking correlations in the dynamics along the
stems into account we obtain new bounds on the fixation probability. More
specifically, for L = B we find in the limit B →∞

1− 1

r4(H − 1)(1− 1
r )2
≤ ρH ≤ 1− 1

1 + r4H
. (5)

Fixation thus tends to certainty for H → ∞, as suggested by (7), while no
longer violating the upper bound identified by (16) for H = 3.
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In the following we borrow a number of valuable concepts and techniques
from both articles, adding and extending where necessary. Exact bounds on the
error terms for finite populations are provided in the appendices.

3. Proof

For the proof of the fixation probability on superstars, we follow the tradition
of (7, 16) and consider superstars with many branches, B, and large reservoirs,
L. More specifically, we study the dynamics of a single branch in detail, and
use this to determine the much slower dynamics of changes in the reservoirs.
For any given stem length, H > 2, the following arguments become exact in the
limit B,L→∞. In practice, we obtain good approximations for H � B,L. In
an effort to reduce notation and increase clarity we assume in the following that
H � B = L ≈

√
N . However, in the full proof (see appendix) we only require

that B and L scale with N but not that they are of the same size.
If mutations arise spontaneously and with equal probability at any node,

then the initial mutant almost certainly arises in a reservoir node, because
reservoir nodes vastly outnumber nodes of all other types. This marks the
starting point for the remainder of our proof (for details see Appendix A).

On occasion, we need to refer to the total fitness of our superstar population
at a given time, Ft, with N < Ft < rN . However, all instances of Ft cancel
throughout the proof and hence we do not need to keep track of its exact value.
Moreover, various necessary approximations introduce different error terms that
are accounted for in full detail in the appendices. All error terms tend to zero as
B,L→∞. It is sufficient to assume that B = L as we take this limit, however
other relations are also possible. The exact restrictions on how we can take
these limits can be found in Appendix E, but for now let us simply assume
that limits are taken simultaneous, with some suitable relation binding B and
L togeather.

3.1. Timescales

Different nodes get updated at different rates. More precisely, any given node
is updated if one of its upstream neighbours reproduces and the node of interest
is chosen for replacement. Here we follow the convention that all nodes have
weighted out-degree of 1, and that weight is evenly distributed among outgoing
links (each link has weight 1/d for a node with d outgoing links). Thus, nodes
with high (weighted) in-degrees, tend to be short lived, while nodes with low
(weighted) in-degrees, tend to be long lived.

Assuming r � N , every node is selected for reproduction approximately
with probability 1/N . The root node has an in-degree of B and all its upstream
neighbours have out-degrees of 1, hence it updates with a probability close to
B/N ≈ 1/

√
N . Recall that we assume H � B = L ≈

√
N . Similarly, reservoir

nodes are replaced with probability of approximately 1/N2, the first stem node
with probability on the order of 1/

√
N , and all other stem nodes with probability

of approximately 1/N . For N � 1, this results in three different timescales: the
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slowest for reservoir nodes that get replaced, on average, only once in N2 time
steps; an intermediate timescale for the stem nodes (with the exception of the
first node), which get replaced once in N time steps; and a fast timescale for
the root node as well as the first stem node in each branch, which update once
in
√
N time steps, respectively.

For N � 1, it is possible to separate the three timescales and analyze the
dynamics of the different types of nodes individually. More specifically, this
allows us to focus on the intermediate timescale associated with the dynamics
in the stem, while treating the state of the slowly updating reservoir nodes as
constant and the fast updating nodes as random variables. In the following, we
derive the evolutionary dynamics for the top, middle and bottom of the stem
in a single branch. The results determine the slow dynamics of reservoir nodes
and describes the early stages of the invasion process, when mutants are rare
among the reservoir nodes. This allows us to derive upper and lower bounds on
the fixation probabilities.

3.2. Top of stem

The first node of the stem gets replaced on the fast time scale, which allows us
to treat its state as a random variable. Initially, out of all L upstream neighbours
in the reservoir of the corresponding branch, only one is a mutant. Hence, at
any given time step, the top node is occupied by a mutant with probability
close to r/L. This mutant reproduces with a probability r/Ft and hence the
probability that a mutant is placed in the second stem node is approximately
r2/(FtL) in each time step (for error terms, see Appendix A).

3.3. Middle of stem

The structure of the stem causes the state of any given stem node to be
highly correlated with its neighbours, both upstream and downstream. More
specifically, if a mutant reproduces it is highly likely to end up replacing its
own offspring. This correlation had been neglected in (7). In the absence
of correlations, whenever a mutant in the stem reproduces, it almost certainly
replaces a resident since residents are more common. Along a stem of length H
this results in an overall amplification of rH . However, due to correlations, if a
mutant in the stem reproduces, it likely replaces its former offspring and hence
diminishes the resulting amplification.

Simulations nicely illustrate the characteristic features of the dynamics along
the body of the stem: clusters of mutants begin at the top of the stem, then
grow and move along the stem. In the following, we refer to these clusters as
trains. A train moves forward and increases in length whenever the front mutant
reproduces, which happens at a rate r/Ft, but shrinks whenever a resident
reproduces and replaces the back end of the train, which occurs at a rate 1/Ft,
see Fig. 3. Thus, as the train moves along the stem, the train length for beneficial
mutants increases, on average.

Note that for small superstars with a single node in the stem body, which
corresponds to H = 2 (or k = 4), the two stem nodes are indeed uncorrelated.
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t0
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t3

t0

t1

t4

t2
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Top of stem Towards root Top of stem Towards root 

a b
Figure 3: Two possible histories of a train of mutants (white) proceeding along a stem filled
with residents (black). a We begin with two mutants (t0). The top node is quickly replaced
by a resident (on the fast time scale) (t1). Some time later the remaining mutant reproduces
(t2), and then the new top node reproduces again (t3). Finally we lose a single mutant from
the back of out train (t4). This general growing pattern applies whenever r > 1. b We begin
with two mutants (t0), and immediately lose the back mutant of our train (t1). The front of
the train reproduces, creating a second mutant (t2), but both fall prey to bad fortune (or low
fitness) and are removed (t3, t4). This behaviour is likely when r < 1, but even for beneficial
mutations many trains do not reach the end of the stem.

However, for H > 2 this assumption breaks down and results in an overestima-
tion of the fixation probabilities as pointed out by (16).

In order to link the stem dynamics to the slow timescale of reservoir nodes,
we need to know the expected train length, T , by the time the train first reaches
the root end of the stem. The history of any given train can be represented as a
random sequence of increments and decrements with a bias that increments are
r times more likely. Essentially, we need to sum over all possible sequences of
increments and decrements given an initial train length of 1 and weigh the result-
ing train length with the probability of the respective sequence. All sequences
where trains disappear (zero train length) are omitted (zero weight). We can
count these sequences that result in extinction using the reflection principle (see
Appendix B). This method yields the expected train length:

T =

(
r

1 + r

)H−2 H−1∑
z=1

(H − z)
(

1

1 + r

)z−1 [(
H − 4 + z

z − 1

)
−
(
H − 4 + z

z − 2

)]
.

(6)
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For H ≥ 2, r > 1 simple bounds for T exist (see Appendix B.1):

(H − 1)

(
1− 1

r

)2

≤ T ≤ H. (7)

This indicates that for r > 1 the train length T grows approximately linearly
with increasing stem length H.

3.4. Bottom of stem

Whenever a train reaches the root end of the stem, its mutants compete
with the resident nodes from the other branches to occupy the root node. Since
the root node is updated on the fast timescale we can again treat its state as
a random variable. Thus, once a train has reached the root end of the stem,
the root node is a mutant with probability close to r/B. Thus, as long as the
train sits at the root end of the stem, the probability in any given time step
that the root node is a mutant, reproduces and creates a second mutant in
any reservoir is r2/(FtB). However, the train is simultaneously eroded from
behind, with train mutants being replaced by residents with probability 1/Ft.
Thus, the train remains at the root end for TFt time steps, on average. Put
together, this means that any given train succeeds in producing a second mutant
in any reservoir with a probability close to r2T/B (for detailed error bounds see
Appendix C).

3.5. Slow dynamics in reservoirs

At any given time step, the probability of losing the initial mutant in the
reservoir is 1/(FtBL). Based on the dynamics in the stem, we derive the per
time step probability that a second mutant is generated in the reservoir of
any branch as the product of the probability that a train is generated and the
probability that the train succeeds in producing a second mutant, which yields
approximately r4T/(FtBL). Thus, the probability to eventually go from one to
two mutants in the reservoirs, as opposed to losing the initial mutant, is close
to

r4T

1 + r4T
. (8)

Since T can be made arbitrarily large (by increasing the stem length H, see
Eq. (7)), the transition from one to two mutants becomes almost certain and,
similarly, the probability of losing the initial mutant becomes vanishingly small.

3.6. Upper bound on fixation probability

To find an upper bound on the fixation probability, ρH , we note that before
our mutant can reach fixation, the superstar must first transition from a state
with one mutant in a reservoir to a state with two mutants in the reservoirs.
Thus, an upper bound on this transition probability serves as an upper bound
on the mutant fixation probability. Moreover, the upper bound can be made
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independent of T by assuming that all trains have the maximum possible train
length. Thus, in the limit of large B and L we find

ρH ≤ 1− 1

1 + r4T
≤ 1− 1

1 + r4H
. (9)

For any given H, r we can find T explicitly using Eq. (6). In particular, we
note that for H = 3, we find T = 2r/(r + 1), thus recovering the upper bound
identified in (16).

3.7. Lower bound on fixation probability

We find a lower bound on the fixation probability by approximating the
dynamics of the system with a random walk. This random walk has a forward
bias given by Eq. (8) as long as mutants are rare, and we assume no forward
bias otherwise. Because even for larger numbers of mutants the forward bias
persists (but there is no simple way to quantify the bias) we obtain a lower
bound of the fixation probability, ρH .

For any finite number of steps, a sufficiently strong initial bias would suffice
to ensure that the random walk eventually reaches fixation with high probability.
However, the limit N →∞ also requires an arbitrarily large number of forward
steps. In order to resolve the interplay between these two limiting behaviours
we set up a martingale and apply the optional stopping theorem (19, p. 210)
(see Appendix D.2 for details). In the limit of large B and L we find:

ρH ≥ ρ̂H = 1− 1

r4T
≥ 1− 1

r4(H − 1)(1− 1
r )2

. (10)

Once again we note that for any given H, r we can find T explicitly, Eq. (6).
Combined with the upper bound, Eq. (9), this means that ρH must exist in a
narrow window, Eq. (5).

4. Robustness

Unfortunately, it turns out that the intriguing feature of superstars to act
as evolutionary amplifiers holds only under very specific conditions. Here we
discuss the most important requirements.

4.1. Selection & Sequence

The original Moran process is formulated as a fecundity based birth-death
process, that is, fitness affects the rate of birth (reproduction) whereas death
(replacement) occurs uniformly at random. Alternatively, fitness could just
as well affect survival such that birth events occur uniformly at random but
death events might, for example, occur with probability inversely proportional
to fitness. Similarly, the sequence of events could be reversed such that first an
individual dies and then the remaining individuals compete to repopulate the
vacant site. This yields a total of four distinct scenarios: Bd, bD, dB and Db,
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where capital letters refer to the fitness dependent selection step. The original
Moran process corresponds to Bd and the fixation probability is given in Eq. (1).
In unstructured populations the four dynamical scenarios result in only marginal
differences in fixation probabilities. However, they can have crucial effects on
the evolutionary outcome in structured populations (20; 21; 22). (23) examine
all four cases for both complete graphs and star graphs, showing that stars act
as evolutionary suppressors in both the dB and Db cases, and are significantly
less effective in the bD case compared to the original Bd case. Similar results
apply to superstars:

bD updates:. For the birth-death process with selection on survival, mutants
only gain any advantage whenever the root node reproduces. Whenever any
other node reproduces, there is only a single downstream node, and thus no
opportunity for competition, rendering any fitness advantage irrelevant. This
lack of advantage in the stem leads to an expected train length of 1, regardless
of stem length or mutant’s fitness. The chance of launching a successful train in
a given time step is 1/(NLB) and the chance of replacing the original mutant
is 1/(NBLr − N(r − 1)). This results in a bias of approximately r

1+r for the
initial mutant to eventually create a second reservoir mutant – the same bias
as for the original Moran process. Thus, we might expect fixation probabilities
similar to the original Moran process on BL nodes, and certainly nowhere close
to the amplification observed for Bd updates.

Db updates:. For the death-birth process with selection on survival, the prospects
of mutants drop even further. The probability to successfully place even a single
offspring in the top of the stem is only r/(L + r). Note that for death-birth
processes the top of the stem no longer changes on the fast timescale and hence
trains start at the top instead of the second node. As the train propagates along
the stem it tends to grow because the mutant at the back of the train is less
likely to die than the resident in front of it, leading to the same train dynam-
ics observed for the Bd process. Upon reaching the end of the stem the train
competes with the other branches for control over the root node and succeeds
with probability near rT/B (over the lifetime of the train). Once a mutant
occupies the root, it is predestined to have many offspring – in each time step
a reservoir node dies with high probability and gets replaced by an offspring of
the mutant in the root node, whereas the probability is low that the root node
is replaced. More specifically, we expect rN/(1 + r) reservoir nodes to become
mutants before the root node is replaced. At that point it is reasonable to as-
sume that mutants reach fixation with high probability. We conjecture that the
probability of mutant fixation on the superstar is close to the probability of a
mutant eventually being placed in the root node. Thus, we expect a fixation
probability close to r2T/BL. This result is significantly less than the almost
certain fixation in the original Moran process (c.f. Eq. (1)). The result does,
however, match well with the 1/N scaling found for the fixation on stars (23).

dB updates:. The final case is the death-birth process with selection on repro-
duction. Once again the probability of placing a mutant offspring in the stem
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before losing the reservoir mutant is near r/L, but now without further bene-
fits along the stem. Consequently, trains that do reach the root still have an
expected length of 1. Thus, each train has a probability of roughly r/B for
claiming the root node, which then produces N/2 mutants in the reservoirs, on
average – enough to suggest fixation with high probability, but less than for Db.
Thus, we conjecture fixation probabilities near r2/N – the worst outcome of the
four scenarios. Once again, we note the significant penalty as compared to the
original Moran process as well as the similarities to the 1/N scaling for stars
(23).

4.2. Mutations

Even though we did not explicitly model the process of mutation, we im-
plicitly assumed that mutations are rare and arise spontaneously in any node
selected uniformly at random. For the superstar this means that most muta-
tions arise in a reservoir node – simply because the overwhelming majority of
nodes are reservoir nodes.

An alternative and equally natural assumption is that mutations arise during
reproduction events. Such a change does not affect the fixation probabilities in
the original Moran process. However, in highly heterogenous population struc-
tures crucial differences in the fixation probabilities can arise because mutants
preferentially arise in certain locations (24). For superstars, when using the
Bd or bD update rules, mutants most likely arise at the top of a stem. This
is an unfortunate position because the mutant is highly likely replaced before
reproducing even once – extinction is almost certain. In contrast, for Db and
dB, mutants again most likely arise among the reservoir nodes – but for those
updates superstars do not act as evolutionary amplifiers.

Even though the dynamical properties of superstars are intriguing, the list of
caveats demonstrates that the evolutionary amplification is highly sensitive to
the details of the model – maybe this is the reason that superstar-like structures
have not been reported in nature.

5. Conclusion

Superstars represent the most prominent representatives of evolutionary am-
plifiers – structures that are capable of increasing selection and suppressing ran-
dom drift. For r > 1 and in the limit of large N we have derived upper and
lower bounds for the fixation probability, ρH :

1− 1

r4T
≤ ρH ≤ 1− 1

1 + r4T
, (11)

where (H − 1)(1− 1/r)2 ≤ T ≤ H.
Even though fixation probabilities can be made arbitrarily close to 1 on large

superstars and sufficiently large H, the fixation probability remains bounded
away from 1 for any finite graph. As a concrete example, consider r = 2 and
H = 50, which yeilds T ≈ 13.25 and 0.995283 ≤ ρ50 ≤ 0.995306 in the limit of
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large N . Similarly, a sizeable, finite superstar with B = L = 5000 (N ≈ 2.5·105)
yields 0.985323 ≤ ρN50 ≤ 0.995375, which includes all error terms (see Appendix
E). In contrast, the fixation probability for a similarly sized isothermal graph
(e.g. a lattice, complete or random regular graph) is just short of 0.5.

The upper bound for ρH in Eq. (11) results in a contradiction with the
originally reported fixation probability, Eq. (3), for sufficiently large r. For
the specific case of H = 3 the discrepancy was pointed out in (16). At the
same time, the lower bound for ρH in Eq. (11) confirms that superstars are
indeed capable of providing an arbitrarily strong evolutionary advantage to any
beneficial mutation, as suggested in (7). Using symmetry arguments, it also
follows that for r < 1 the fixation probability can be made arbitrarily small, as
required for a perfect evolutionary amplifier (see Appendix F).

In the case H = 2 (or k = 4 in (7)) we obtain an expected train length of
T = 1 and recover the original bias, r4/(1 + r4). Discrepancies arise only for
H ≥ 3 (or k ≥ 5) but those cases were not included in the simulations in (7).
For H = 3, we obtain T = 2r/(1+r), which results in a bias of 2r5/(1+r+2r5)
and recovers the upper bound reported by (16). Extending the technique in
(16) to higher values of H numerically, we find that the upper bounds found
match Eq. (11).

An appropriately skeptical reader might ask why the theory presented here
should be trusted over those previously presented in the literature – after all,
both claim to offer rigorous proof. First, we note the agreement between pre-
dictions made here, and both (7) and (16) for the appropriate values of H.
Second, we identify correlations between neighbouring stem nodes as the cause
for the discrepancies between the two previous papers. Finally, we invite readers
to scrutinize the proof offered here most thoroughly. Superstars have already
presented unexpected subtleties, and as always, we need caution and vigilance
to discern between scientific selection and random drift.

Acknowledgments

This work was supported by the Natural Sciences and Engineering Research
Council of Canada (NSERC) and the Foundational Questions in Evolutionary
Biology Fund (FQEB), grant RFP-12-10.

References

[1] Antal, T., Redner, S. & Sood, V., 2006 Evolutionary dynamics on degree-
heterogeneous graphs. Physical Review Letters 96, 188104.

[2] Bürger, R. & Lande, R., 1994 On the distribution of the mean and variance
of a quantitative trait under mutation-selection-drift balance. Genetics
138.

[3] Nowak, M. A. & May, R. M., 1992 Evolutionary games and spatial chaos.
Nature 359, 826–829.

14



[4] Fu, F. & Nowak, M. A., 2013 Global migration can lead to stronger spatial
selection than local migration. Journal of Statistical Physics 151, 637–653.
(doi:10.1007/s10955-012-0631-6).

[5] Moran, P. A. P., 1962 The Statistical Processes of Evolutionary Theory.
Clarendon Press, Oxford.

[6] Nowak, M. A., Sasaki, A., Taylor, C. & Fudenberg, D., 2004 Emergence of
cooperation and evolutionary stability in finite populations. Nature 428,
646–650.

[7] Lieberman, E., Hauert, C. & Nowak, M. A., 2005 Evolutionary dynamics
on graphs. Nature 433, 312–316. ISSN 1476-4687.

[8] Maruyama, T., 1970 Effective number of alleles in a subdivided population.
Theoretical Population Biology 1, 273–306.

[9] Slatkin, M., 1981 Fixation probabilities and fixation times in a subdivided
population. Evolution 35, 477–488.
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Appendix A. Initial conditions

If mutations arise spontaneously and with equal probability in any node then
the initial mutant arises in a reservoir node with probability BL/(BL+1+HB).
This probability can be made arbitrarily close to one, for suitably large L or B.
The mutant arises in a stem or root node with probability

ε0 =
1 +HB

BL+ 1 +HB
. (A.1)

Thus, the final fixation probability, ρH (see Eq. (11)), needs to be multiplied
by 1 − ε0 to account for this possibility. Because ε0 is only used to derive the
lower bound on ρH , assuming extinction of all mutants not arising in a reservoir
node preserves inequalities by effectively ignoring the small possibility that an
invading mutant placed in stem nodes or the root node could still reach fixation.

The first node of the stem gets replaced on the fast time scale, which allows
us to treat its state as a random variable. However, at early stages of invasion,
only one of the L upstream neighbours is a mutant. Hence, at any given time
step, the top node is occupied by a mutant with probability

r

L− 1 + r
=
r

L
(1− ε1) (A.2)

ε1 =
r − 1

L+ r − 1
(A.3)

This mutant reproduces with a probability r/Ft and hence the probability that a
mutant is placed in the second stem node is r2/(Ft(L+r−1)) in each time step.
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However, we need to account for the possibility that the initial mutant in the
reservoir is replaced before the first node in that stem. On a given time step, the
chance that the reservoir mutant is replaced by a resident is less than 1/(FtBL).
Conversely, the probability of the first node in the chain being replaced exceeds
L/Ft. Thus the chance that the initial mutant gets replaced before its offspring
replaces the first node in the chain is

ε2 < 1/(1 +BL2). (A.4)

For our proof we assume that the first node in any chain can be treated as
a random variable. The above error term accounts for any slight discrepancy
caused by our initial conditions.

Appendix B. Expected train length T .

Mutants placed in the main body of the stem (excluding the first node, which
updates on a fast timescale) propagate down the stem in trains. Trains grow
at one end as mutants reproduce, and shrink at the other end as mutants are
replaced by residents (see Fig. 3). At any time, t, the state of a train is given by
two integers: At and Zt. Here At refers to the position of the mutant at the front
of the train, and Zt refers to the position of the resident directly behind the train.
The current length of the train is thus given by At − Zt. Because in most time
steps no change occurs in this particular stem, we consider a condensed process,
which only accounts for events that change the state of the train. This means
that At increases with probability r/(1 + r) while Zt increases with probability
1/(1 + r). Thus, for beneficial mutants the length tends to increase as the train
progresses down the stem. If at any time Zt ≥ At the train has vanished and the
stem is cleared of mutants. In this case, we say that the train, which “arrives”
at the end of the stem, has length zero.

In order to determine the expected train length, T , we consider the above
process on a grid, where the horizontal axis represents the position of the front,
At, and the vertical axis the back of the train, Zt. Each point on the grid
and below the diagonal, At = Zt, represents a possible configuration of a train
in the stem, see Fig. B.4. All other points represent invalid configurations,
which we refer to as ghost states. For each train, the initial configuration is
(A0, Z0) = (2, 1), that is, the second stem node is a mutant, while the state
of the first stem node is a resident (due to replacement on the fast time scale,
leading to a slight underestimate).

Each train produces a trajectory or path on the grid that originates in
(A0, Z0) and ends at time τ once the train has reached its destination: the
bottom of the stem, where Aτ = H. However, if at any point in time At ≤ Zt
then this represents an invalid path because the train has vanished. Every in-
valid path touches or crosses the diagonal At = Zt at least once. For a valid
path At > Zt must hold at all times. The expected train length, T , is the
weighted average over all paths, with invalid paths being considered as having
length zero. The number of valid paths can be calculated using the reflection
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Figure B.4: Grid showing collection of possible train states. Permitted states (black outline),
ghost states (grey outline) and extinction states (black fill) as well as a number of possible
paths from our initial state (black outline, green fill) to a sample end state (black outline orange
fill). Depicted are a permitted path (continuous), an invalid path (leading to extinction, long
dash) and the associated “ghost path” from the reflection of our initial state to the sample
end state (fine dash).

principle (25, p. 88), which states that for every invalid path a ghost path exists,
starting from (Z0, A0). The trajectory of a ghost path is the reflection of the
corresponding invalid path along the diagonal At = Zt, up to the point where
the invalid path touches or crosses At = Zt for the first time. From then on
the ghost path and the remainder of the invalid path coincide, see Fig. B.4. In
order to calculate the expected train length, T , we consider the train lengths
based on all paths and subtract all invalid paths, to obtain the train length
based on valid paths only. The number of ghost paths corresponds to all paths
starting from (Z0, A0), the reflection of (A0, Z0) and hence the name of the
method. Having counted the number of paths we then weigh the corresponding
train length by the probability of each possible path and obtain:

T = (1− α)H−2
H−1∑
z=1

(H − z)αz−1
[(
H − 3 + z − 1

z − 1

)
−
(
H − 3 + z − 1

z − 2

)]
(B.1)

with α = 1/(1 + r). We assume beneficial mutations, r > 1, such that 0 < α <
1/2. All paths require H − 2 steps that increase At from the starting point at 2
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to the end point at H, which occurs with probability 1− α for each step. The
combinatorial sum then accounts for all possibilities and probabilities that Zt
is increased along valid paths. In particular, the index variable z indicates the
position of the tail of the train and hence H − z specifies the train length. The
tail starts at 1 and, for any valid path, reaches at most H − 1. Because we are
interested in the length of the train at the moment of arrival, the final step must
be an increment of At. In particular, it follows that z = H − 1 has zero valid
paths – a reassuring result as we know that no train could possibly have length
one at the moment of its arrival. Note that we have used the convention that(
n
k

)
= 0 for k < 0, which applies only if the tail remains at Zt = 1 and admits

only a single valid path.

Appendix B.1. Simplifying T

We now resort to algebraic manipulation. Various binomial coefficient iden-
tities are used throughout:

T = (1− α)H−2
H−1∑
z=1

(H − z)αz−1
[(
H + z − 4

z − 1

)
−
(
H + z − 4

z − 2

)]
using Pascal’s rule

= (1− α)H−2
H−1∑
z=1

(H − z)αz−1
[(
H + z − 3

z − 1

)
− 2

(
H + z − 4

z − 2

)]
splitting sum

= (1− α)H−2
H−1∑
z=1

(H − z)αz−1
(
H + z − 3

z − 1

)
− 2α(1− α)H−2

H−1∑
z=1

(H − z)αz−2
(
H + z − 4

z − 2

)
changing second summation to obtain lower bound

≥ (1− α)H−2
H−1∑
z=1

(H − z)αz−1
(
H + z − 3

z − 1

)
− 2α(1− α)H−2

H∑
z=2

(H + 1− z)αz−2
(
H + z − 4

z − 2

)
merging sums and relabelling indices

= (1− 2α)(1− α)H−2
H−2∑
z=0

(H − 1− z)αz
(
H + z − 2

z

)
expanding factor

= (1− 2α)(1− α)H−2
H−2∑
z=0

(2(H − 1)− (H − 1)− z)αz
(
H + z − 2

z

)
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using the combinatorial identity (n+ k)
(n+k−1

k

)
= (n+ k)

(n+k−1
n−1

)
= n

(n+k
n

)
= n

(n+k
k

)

= (H − 1)(1− 2α)(1− α)H−2
H−2∑
z=0

αz
[
2

(
H + z − 2

z

)
−
(
H + z − 1

z

)]

extending the sum to ∞ can only decrease the lower bound because 2
(n+k

k

)
−
(n+k+1

k

)
=
(n+k

k

)
−(n+k

k−1

)
≤ 0 for k > n and (1− 2α) > 0

= (H − 1)(1− 2α)(1− α)H−2
∞∑
z=0

αz
[
2

(
H + z − 2

z

)
−
(
H + z − 1

z

)]

using (1− α)−n−1 =
∑∞

k=0 α
k
(n+k

k

)
since |α| < 1

= (H − 1)(1− 2α)(1− α)H−2
[
2(1− α)1−H − (1− α)−H

]
= (H − 1)

(
1− 2α

1− α

)2

.

And so we have

T ≥ (H − 1)

(
1− 1

r

)2

. (B.2)

Hence, for r > 1, the expected train length, T , can be made arbitrarily long by
choosing a suitably long chain, H.

Appendix B.2. Train collisions

The above derivation of the expected train length neglects the possibility
that two trains may collide and merge, which introduces a source of error.
When two trains collide, the first finds itself being erased at greater than the
expected rate, effectively reducing its train length. Therefore, collisions decrease
the expected train length T – despite the fact that merging trains may lead to
longer overall lengths – hence Eq. (B.1) overestimates the expected train length.
An upper bound on our true T is found by assuming that trains never interfere
with one another, and simply using Eq. (B.1). Conversely, a lower bound for
T is obtained by assuming that the second train completely eradicates the first
train. In order to find this lower bound we need to determine the probability
that a train collision occurs. An upper bound on this collision probability is
given by the probability that a second train is generated while another train is
still occupying the stem. This can be formulated in terms of a negative binomial
distribution where the generation of a new train counts as a “success” while a
decrease in length of the existing train in the stem counts as a “failure”. In each
time step a new train is generated with probability r2/(Ft(L+ r − 1)) whereas
the probability that the existing train length decreases, i.e. the resident directly
behind the train reproduces, is at least 1/Ft (exactly 1/Ft along the stem, but
greater for the first stem node). After H failure events we know that the stem
must be cleared and contain only residents. Therefore, train collisions occur

20



at most with the probability that a new train is generated prior to H failure
events:

P (no 2nd train) =

(
1− r2

L+ r − 1 + r2

)H
> 1−H r2

L+ r − 1 + r2
. (B.3)

The inequality in Eq. (B.3) results from expanding and then truncating the
power term. This is permitted, because when expanding the alternating sum for
sufficiently large L, the absolute value of subsequent terms is strictly decreasing.
Thus, the chance that a second train is launched while another one still occupies
the stem is at most

ε3 =
Hr2

L+ r − 1 + r2
(B.4)

and becomes small for L � Hr2. Thus, the true expected train length lies
between T and T (1− ε3).

Appendix C. Interaction of trains with root node

Here we calculate the probability that a train of mutants, which arrives at the
base of the stem with an initial length l, succeeds in taking over the root node
and placing a new mutant in one of the reservoirs. We adapt the technique
used in (16), considering a finite state Markov process with two absorbing
states: either a new mutant is placed in one reservoir, or the mutant train has
disappeared. All other states represent a particular train length with the root
node occupied by either resident or mutant.

For each state, the probability of eventually succeeding is pil, where i ≤ l
indicates the current train length and l indicates whether the root node is
occupied by a mutant, ↑, or resident, ↓. Clearly p0↓ = 0 because the train
has disappeared, the root is a resident and hence an absorbing state has been
reached. Similarly, p0↑ = r/(B + r), denotes the probability that the mutant in
the root node reproduces before being replaced by the offspring of residents in
any of the B branches. By examining all possible transitions we obtain:

(B + r)pi↑ = (B − 1)pi↓ + r + pi−1↑ (C.1)

(r + 1)pi↓ = rpi↑ + pi−1↓ (C.2)

If the train is i mutants long, and the root is a mutant, a “success” occurs with
relative weight r, whereas the root mutant is lost, with relative weight B − 1
(because there are B − 1 other branches), or our train may erode, with relative
weight 1, leaving the root node unchanged. If the root node is a resident, then
the only possible actions are the replacement of the root node, or eroding the
train from behind, with relatively probabilities r and 1 respectively. Finally, we
have coefficients on the left hand side to normalize over all possible courses of
action. Written as a matrix equation this gives:[

B + r 1−B
−r r + 1

] [
pi↑
pi↓

]
=

([
r
0

]
+

[
pi−1↑
pi−1↓

])
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which yields[
pi↑
pi↓

]
=

1

B + 2r + r2

[
r + 1 B − 1
r r +B

]([
r
0

]
+

[
pi−1↑
pi−1↓

])
. (C.3)

We now calculate both upper and lower bounds on the expected success prob-
ability upon arrival, E(pl↓). Let us start with the upper bound.

By neglecting terms in the normalization term and increasing several of the
matrix entries, we find an upper bound on the R.H.S. of Eq. (C.3). This works
because pi↑, pi↓ ≥ 0, and thus we are making the R.H.S. strictly more positive.
It also significantly simplifies our equation to[

pi↑
pi↓

]
<

1

B + 2r + 1

[
r + 1 B + r
r + 1 r +B

]([
r
0

]
+

[
pi−1↑
pi−1↓

])
where the inequality applies element-wise. Substituting p0↑ = r/(B+r), p0↓ = 0
into the above gives

p1l <
r2 + r

B + 2r + 1

(
1 +

1

B + r

)
Using the fact that the upper bounds for pi↑ and pi↓ are equal, along with
the fact that the denominator of the fraction is equal to the row sum of the
transition matrix gives:

pil <
r2 + r

B + 2r + 1
+
B + 2r + 1

B + 2r + 1
pi−1l.

By induction we find

pil <
r2 + r

B + 2r + 1

(
i+

1

B + r

)
.

This yields an upper bound for pi↑, which we then use to calculate a tighter
bound for pi↓. From the last line of Eq. (C.3) we derive:

pi↓ <
r

B
(r + pi−1↑) + pi−1↓

which leads to

pi↓ <

n=i∑
n=1

r

B
(r + pn−1↑) ≤

ir2

B

(
1 +

r + 1

(B + 2r + 1)(B + r)
+
H − 1

2

r + 1

B + 2r + 1

)
.

Thus we end up with pi↓ < ir2(1 + ε4+)/B, where

ε4+ =
1 + r

(B + 2r + 1)(B + r)
+

(H − 1)(r + 1)

2B + 4r + 2
(C.4)
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is our error term. This error term can be made arbitrarily small for sufficiently
large B.

For the lower bound, we must deal with the possibility that a small number
of other branches, δ, also contain mutants. Because the above train collision
argument (Appendix B.2) is based on at most a single mutant existing in the
reservoir of each branch, we wish to only consider reproductive events, which
place new mutants into branches that currently contain no mutants and ne-
glect the rest (which we can do, as this calculation desires a lower bound).
Further, we must contend with the fact that trains from other mutants may
compete for control of the root node. Although generically we do not expect
to encounter other trains, we calculate our lower bound as if all other mutant
occupied branches have mutants at the base of their stems at all times. This
arrangement, while unrealistic, describes the situation which minimizes the suc-
cess probability of a given train, and is thus useful for finding lower bounds.
The following equations are written under the assumption of this worst case
scenario (worst from the perspective of the train we are focusing on):[

B + r + δ(r − 1) 1−B − δ(r − 1)
−r r + 1

] [
pi↑
pi↓

]
=

([
rB−δB

0

]
+

[
pi−1↑
pi−1↓

])
which can be rewritten as[
pi↑
pi↓

]
=

1

B + γ(r − 1) + 2r + r2

[
r + 1 B + δ(r − 1)− 1
r r +B + δ(r − 1)

]([
rB−δB

0

]
+

[
pi−1↑
pi−1↓

])
.

By ignoring the positive effects of pi−1↑ on pi↓ we form the inequality

pi↓ >
1

B + δ(r − 1) + 2r + r2

(
r2
B − δ
B

+ (r +B + δ(r − 1))pi−1↓

)
for i ≥ 1. By induction this leads to

pi↓ >
B − δ
B

r2

B + δ(r − 1) + 2r + r2

i−1∑
n=0

(
B + r + δ(r − 1)

B + δ(r − 1) + r2 + 2r

)n

=
B − δ
B

r2

B + δ(r − 1) + 2r + r2

1−
(

B + δ(r − 1) + r

B + δ(r − 1) + r2 + 2r

)i
1− B + δ(r − 1) + r

B + δ(r − 1) + r2 + 2r

and finally to

pi↓ >
B − δ
B

r2

r + r2

(
1−

(
1− r2 + r

B + δ(r − 1) + r2 + 2r

)i)
.

As long as i(r2+r)/(B+δ(r−1)+r2+2r) < 1, the series expansion of the inner
bracket gives an alternating sequence with monotone decreasing absolute terms.
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Therefore, we can truncate the series after three terms while still preserving the
inequality because the sum of the first three terms is greater than any subsequent
sum. This leads to:

pi↓ >
B − δ
B

ir2

B + δ(r − 1) + r2 + 2r

(
1− i− 1

2

r2 + r

B + δ(r − 1) + r2 + 2r

)
If we rearrange the above, remembering that 1/(1+x) < 1−x whenever x > −1,
we find

pi↓ >
ir2

B

(
1− δ

B
− δ(r − 1) + r2 + 2r

B
− H − 1

2

r2 + r

B
+O(B−2)

)
.

We are free to drop the very small positive terms at the end, and find the result
pi↓ > (1− ε4−)ir2/B, where the error term

ε4− =
2δr + r2 + 3r +H(r2 + r)

2B
(C.5)

can be made small whenever δ,H � B. Thus E(pl↓) > Tr2B−1(1 − ε4−).
Armed with the constrains (1− ε4−)lr2/B < pl↓ < (1+ ε4+)lr2/B, we note that
E(pl↓) ≈ E(lr2/B) = Tr2/B.

Appendix D. Bounds on fixation probabilities

Appendix D.1. Upper bound

Starting with a single mutant in one reservoir initially, we first must have two
before we can have BL reservoir mutants. Thus, the probability of transitioning
from 1 to 2 mutants in the reservoir serves as a straight forward upper bound
for the mutants fixation probability. To further simplify the upper bound, we
make several optimistic (from the mutants point of view) assumptions: (i) the
original mutant appears in a reservoir node (ignoring ε0, see Eq. (A.1)); (ii)
We slightly increase the train launch probability, dividing by L rather than
L + r − 1 (ignoring ε1, see Eq. (A.3)) (iii) no detrimental effects based on our
initial conditions (ignoring ε2, see Eq. (A.4)); (iv) no train collisions (ignoring ε3,
see Appendix B.2); and finally (v) we use the upper bound for the probability
that a train succeeds in producing another reservoir mutant ((1 + ε4+)Tr2/B,
see Eq. (C.4)).

A single mutant in any reservoir produces a new train with a probability of
at most r2/(FtL) per time step. Subsequently, each train succeeds in placing
another mutant in any reservoir with a probability of at most (1 + ε4+)Tr2/B.
At the same time, the root node has a probability of at least

B − 1

B + r − 1

1

FtBL
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to remove the mutant node from the reservoir. Thus, the chance of the mutant
producing a successful train before being erased by the root node is at most
ρH+ with

ρH ≤ ρH+ =
Tr4(1 + ε4+)

Tr4(1 + ε4+) + B−1
B+r−1

≈ 1− 1

Tr4 + 1
. (D.1)

The approximation in Eq. (D.1) becomes exact in the limit of large B. Moreover,
because T < H, we can replace T by H in Eq. (D.1) to obtain a simpler and
more generous upper bound.

Appendix D.2. Lower bound

On the slow timescale the dynamics of the reservoir can be approximated
by a random walk Xt on the number of mutants in the reservoir. Consider the
random walk on the integers from 0 to BL with forward bias γ for Xt < δ � B
and no bias for Xt ≥ δ. Because the chance of any particular reservoir mutant
replacing any particular reservoir resident is always higher than the converse, we
can be sure that some forward bias persists for all Xt. Unfortunately, because
the analytic arguments in the previous sections fail for many reservoir mutants,
we must make the conservative assumption that no bias applies in this region.
The fixation probability of this random walk acts as a lower bound on the
fixation probability of the true process. In the following, we assume that H and
r are fixed and that B,L� H, δ.

In order to determine the fixation probability of the random walk Xt, we
construct a martingale, Q(Xt). A martingale is a function of a random variable
such that the expected value of the martingale in the next time step is equal to
the current value:

E(Q(Xt+1)|Q(Xt)) = Q(Xt). (D.2)

For Q(Xt) to be a martingale, we require:

Q(k) =


γ

1 + γ
Q(k + 1) +

1

1 + γ
Q(k − 1) 0 < k < δ (forward bias)

1

2
Q(k + 1) +

1

2
Q(k − 1) δ ≤ k < BL (no bias).

(D.3)

These constraints admit the solution Q(k) = γ−k for k < δ, and Q(k) = Ak+D
for k ≥ δ. For Q(k) to satisfy the martingale conditions as needed, we demand
δ ∈ N. The constants A,D are determined by connecting the solutions for the
two regions. In particular,

γ−δ = Q(δ) = Aδ +D

must hold such that Q(δ) is well defined and

2(Aδ +D) = γ−δ+1 +Aδ +A+D
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to satisfy the martingale property at δ. Thus,

A = γ−δ(1− γ)

D = γ−δ(1− δ(1− γ))

which yields

Q(0) = 1

Q(1) = γ−1

Q(BL) = γ−δ + γ−δ(1− γ)(BL− δ).

Let τ be the first time we reach one end of our random walk. Because Q(k) is
bounded for all relevant values of k we are able to invoke the optional stopping
theorem (19, p. 210), which renders

Q(1) = Q(X0) = E(Q(Xτ )) = Q(0)P (0) +Q(BL)P (BL),

where P (0) and P (BL) represent the probabilities of reaching either end of our
random walk. Using P (0) = 1− P (BL) we find

P (BL) =
Q(1)−Q(0)

Q(BL)−Q(0)
=

1− γ−1

1− γ−δ − γ−δ(1− γ)(BL− δ)
. (D.4)

In order to keep error terms small, we must select δ such that γδ � BL and
δ � B,L. As long as B and L are large and sufficiently similar, this is possible
provided γ > 1 (see below). Thus, for any choice of H, and for any r > 1 we
can select B and L such that

P (BL) =
Q(1)−Q(0)

Q(BL)−Q(0)
=

1− γ−1

1 + ε5
(D.5)

with

ε5 = γ−δ ((γ − 1)(BL− δ)− 1)� 1.

In order to find an upper bound on ε5, we require a lower bound on the forward
bias γ. In particular, we would like to show that γ > 1 and hence that ε5 can be
made small. This can be seen by taking the lower bound on the production rate
of successful trains, (1− ε1)(1− ε3)(1− ε4−)Tr4/(BLFt)), and comparing to our
upper bound on the removal probability for reservoir mutants, 1/(BLFt). This
represents the eventual forward bias after the top of the stem has been replaced
at least once. To account for the possibility of mutant loss before the top of the
stem has been replaced we must consider ε2, which acts as an additive penalty
(because it only applies once per reservoir mutant). This yields

γ ≥ r4T (1− ε1)(1− ε3)(1− ε4−)− ε2. (D.6)
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In the limit of large B and L all error terms tend to zero. Thus, to show
γ > 1, it is sufficient to show that r4T > 1. Recalling that At−Zt represents the
length of a train at time t (see Appendix B), and noting that it is submartingale
(the expected future value is greater than the current value) whenever r > 1,
we can easily show that T = E(Aτ −Zτ ) ≥ A0 −Z0 = 1, and thus, in the limit,
γ ≥ r4 > 1. Thus ε5 can indeed be made arbitrarily small.

Substituting Eq. (D.6), the lower bound of γ into Eq. (D.5) yields a lower
bound on P (BL), which in turn provides a lower bound on the fixation prob-
ability, see Eq. (10). To simplify the lower bound substitute the lower bound
for T , (H − 1)(1− 1/r)2), into Eq. (D.6) and obtain a looser bound on fixation
probability.

Appendix E. Bringing it all together

Collating Eq. (D.5) and Eq. (D.1), we find:

1− ε0
1 + ε5

(
1− 1

r4T (1− ε1)(1− ε3)(1− ε4−)− ε2

)
≤ ρH ≤ 1− B − 1

(B + r − 1)Tr4(1 + ε4+) +B − 1
(E.1)

with the train length, Eq. (B.1)

T = (1− α)H−2
H−1∑
z=1

(H − z)αz−1
[(
H − 3 + z − 1

z − 1

)
−
(
H − 3 + z − 1

z − 2

)]
,

(H − 1)(1− r−1)2 ≤ T ≤ H,

the chance that the initial mutant is not in the reservoir, Eq. (A.1)

ε0 =
1 +HB

BL+ 1 +HB
,

Simplifying approximation in train launch probability, Eq. (A.3)

ε1 =
r − 1

L+ r − 1

the chance that the initial mutant is removed before it reproduces, Eq. (A.4)

ε2 =
1

1 +BL2
,

the chance of train collisions, Eq. (B.4)

ε3 = H
r2

L+ r − 1 + r2
,
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the lower bound for train success, Eq. (C.5)

ε4− =
2δr + r2 + 3r +H(r2 + r)

2B
,

the upper bound for train success, Eq. (C.4)

ε4+ =
(r + 1)

B + 2r + 1

(
1

B + 1
+
H − 1

2

)
,

and finally the Martingale error term, Eq. (C.4)

ε5 = γ−δ[(γ − 1)(BL− δ)− 1].

Because many of the error terms are dependent on both B and L it makes sense
to take the limit of both simultaneously. This will force all error terms to zero
as long as B,L � H, δ and ε5 → 0. In particular, in the limit B → ∞, with√
B − 1 < δ ≤

√
B and L = B all error terms tend to zero. Other variations,

such as L = Bβ , β > 0 are possible, although it is suspected that relations of
the form L = βB would prove problematic, as we would then need to reconcile
the bounds δ � B and γδ � BβB , a problem we do not run into for L = Bβ .

Simpler and looser upper and lower bounds independent of T are obtained
by substituting upper and lower bounds for T (respectively) into Eq. (E.1).

Appendix F. Deleterious mutations, r < 1

As a final remark, we note that the above arguments are based on the as-
sumption of a beneficial mutation, r > 1. In addition to promoting beneficial
mutations, an evolutionary amplifier must also suppress the fixation of dele-
terious mutations, r < 1. Here we argue that a deleterious mutant indeed
disappears almost surely on sufficiently large superstars.

Consider a single mutant with fitness 1, in a population of residents with
fitness 1/r. Note that we can rescale fitness without changing the dynamics
of the system, since fitness is never used in an absolute sense, only relative
fitness matters. We next observe that all calculations performed previously with
respect to a rare mutant with a fitness advantage would now apply to a resident,
if it were to become rare – that is, if residents were rare, we would expect
trains of residents to propagate down the stem (incrementing with probability
1/(r + 1) > 1/2 and shrinking with probability α = r/(1 + r) < 1/2). The
same martingale argument that we previously used to find a lower bound on
mutant fixation probability can now be used to obtain a lower bound on resident
fixation probability. This time we use the random walk Xt to track the number
of residents in our reservoir nodes. Thus X0 = BL− 1. This leads to a formula
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for the fixation probability of residents

1− ρH ≥ P (BL) =
Q(0)−Q(BL− 1)

Q(0)−Q(BL)

=
1− γ−δ − γ−δ(1− γ)(BL− 1− δ)

1− γ−δ − γ−δ(1− γ)(BL− δ)

= 1− γ−δ(γ − 1)

1− γ−δ − γ−δ(1− γ)(BL− δ)

and hence

ρH ≤
γ−δ(γ − 1)

1− γ−δ − γ−δ(1− γ)(BL− δ)
≤ γ1−δ. (F.1)

In the above we require γ to be the bias in favour of the resident. In order
to calculate it we need to find the expected train lengths of resident trains.
Structurally the train equation is the same as previously, but with r replaced
by 1/r (the fitness of residents). Because 1/r is now greater than one, all train
length arguments that previously depended on r > 1 for beneficial mutations
can now be applied to the resident with 1/r > 1. Thus, we can show that
the expected length of resident trains is large. Because γ ≈ r−4T , large T
leads directly to a large γ (in the residents favour), and γ−δBL � 1. The
Martingale argument will significantly underestimate the fixation probability for
the resident and thus overestimate the probability of mutant fixation. In order
to derive exact bounds on the new bias in favour of residents, γ, we must apply
error terms similar to ε2, ε3, ε4−, to obtain lower bounds on the effectiveness of
“resident trains”. No error term equivalent to ε0 arises because the possibility
that the initial mutant is not placed in a reservoir node only reduces the mutant
fixation probability. Thus, the fixation probability of a deleterious mutant is
bounded by Eq. (F.1) and can be made arbitrarily small for sufficiently big H,L
and B.
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